Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Deepak Chopra,^a* T. P. Mohan,^b K. S. Rao^b and T. N. Guru Row^a

^aSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^bRallis India Limited, Peenya Industrial Area, Bangalore 560 078, India

Correspondence e-mail: deepak@sscu.iisc.ernet.in

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.050 wR factor = 0.149 Data-to-parameter ratio = 15.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Methyl 2(*E*)-methoxyimino-2-[2-(2-methylphenoxymethyl)phenyl]acetate

The title compound (also known as kresoxim-methyl), $C_{18}H_{19}NO_4$, is an active agrochemical exhibiting fungicidal activity. The dihedral angle between the two rings is 65.9 (1)°. The crystal structure is stabilized by weak but highly directional $C-H\cdots O$ and $C-H\cdots \pi$ intermolecular interactions.

Received 11 November 2004 Accepted 16 November 2004 Online 27 November 2004

Comment

An important aspect in the rational design of bioactive molecules involves relating chemical structure to biological activity (Lewis *et al.*, 1991). The conformation of the molecule is found to influence the levels of biological activity. Correlation of the results obtained from X-ray crystallography with biological activity has aided in the chemical design of few active agrochemicals. The activity of a series of triazolyl ketone herbicides (Anderson *et al.*, 1983) has been investigated along with the fungicidal activities of *N*-phenylsuccinamides (Zenei *et al.*, 1988). In this paper, we report the structure of the title compound, (I), which possesses fungicidal activity.

In (I), there is an intramolecular C8–H8B···O2 interaction (Fig. 1 and Table 2), forming a pseudo-seven-membered ring [Etter symbol S(7); Bernstein *et al.*, 1995]. Molecules are linked *via* C14–H14···O3ⁱⁱ hydrogen bond (see Table 2 for symmetry code), forming chains along the *b* axis. Furthermore, weak but highly directional C–H·· π interactions form molecular chains parallel to the *c* axis (Fig. 2 and Table 2).

Experimental

Compound (I) was obtained from Rallis India, Bangalore. Single crystals were grown by slow evaporation of an acetone solution at 278 K.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

Crystal data

C18H19NO4 $M_r = 313.34$ Monoclinic, C2/c a = 16.843 (16) Åb = 15.480 (14) Åc = 13.728 (13) Å $\beta = 114.337 (14)^{\circ}$ $V = 3261 (5) \text{ Å}^3$ Z = 8

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.933, T_{\max} = 0.982$ 16747 measured reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0725P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 1.85P]
$wR(F^2) = 0.149$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3315 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
211 parameters	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

 $D_x = 1.276 \text{ Mg m}^{-3}$

Cell parameters from 865

Mo $K\alpha$ radiation

reflections $\theta = 1.4-26.4^{\circ}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 26.4^{\circ}$ $h=-21\rightarrow 20$

 $k = -19 \rightarrow 19$

 $l = -17 \rightarrow 16$

Block, colorless

 $0.28 \times 0.25 \times 0.20 \text{ mm}$

3315 independent reflections 2332 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

01-C5	1.365 (2)	O2-N1	1.379 (2	
01-C8	1.428 (2)	N1-C15	1.287 (2	
C5-O1-C8-C9	179.98 (14)	C9-C10-C15-N1	72.0 (2)	
C10-C9-C8-O1	63.6 (2)	C11-C10-C15-C18	71.6 (2)	
C17-O4-C18-C15	178.73 (17)	C8-O1-C5-C4	2.8 (3)	

Table	2	
** *		

H	lyd	lrogen-	bonding	g geomet	try ((A, °).
---	-----	---------	---------	----------	-------	-------	----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} \hline C8-H8B\cdots O2\\ C17-H17B\cdots Cg1^{i}\\ C14-H14\cdots O3^{ii} \end{array}$	0.97	2.52	3.191 (3)	126
	0.96	2.81	3.504 (4)	130
	0.93	2.60	3.440 (4)	151

Symmetry codes: (i) $x, -y, \frac{1}{2} + z$; (ii) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$. Cg1 is the centroid of the C9–C14 benzene ring

All H atoms were constrained to ideal geometry, with C-H distances in the range 0.93–0.97 Å, and with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl})$. The methyl groups were allowed to rotate freely about the C-C bonds.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).

We thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the

Figure 1

The molecular structure of (I), showing 50% probability ellipsoids. The dotted line indicates the C-H···O intramolecular interaction. Other H atoms have been omitted.

Packing diagram of (I), showing, by dotted lines, the $C-H \cdots O$ hydrogen bond and $C-H\cdots\pi$ intermolecular chains along the b and c axes, respectively.

IRHPA-DST program. D. Chopra thanks the CSIR, India, for a JRF.

References

- Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.
- Anderson, N. H., Heritage, K. J. & Branch, S. K. (1983). Quantitative Approaches to Drug Design, edited by J. C. Dearden, p. 47. Amsterdam: Elsevier.

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2000). *SMART* (Version 5.628) and *SAINT* (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Lewis, R. J., Camilleri, P., Kirby, A. J., Marby, C. A., Slawin, A. A. & Williams, D. J. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1625–1631.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
- Watkin, D. M., Pearce, L. & Prout, C. K. (1993). *CAMERON*. Chemical Crystallography Laboratory, University of Oxford, England.
- Zenei, T., Takayami, C. & Terada, H. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 1439–1445.